Human Vascular Microphysiological System for in vitro Drug Screening

Supplementary Information

Authors:

C. E. Fernandez¹, R. W. Yen¹, S. M. Perez¹, H. W. Bedell¹, T. J. Povsic², William M. Reichert¹, G. A. Truskey^{1*}

Author Affiliations:

¹Department of Biomedical Engineering, Duke University, Durham, NC 27708

²Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27708

*To whom correspondence should be addressed: gtruskey@duke.edu

Supplementary Materials and Methods:

S1. Tensile Testing of TEBVs

Circumferential tensile strength was analyzed using a micro-strain analyzer (TA Instruments) with modified grips as shown in Fig. S1. TEBVs were cut in 5 mm sections and mounted through grips with diameters of 300 µm. Cyclic pre-conditioning was performed by stretching the lumen to a strain of 20% for 6 cycles (1). An optimized strain rate of 0.08 mm/s was used to stretch rings until failure.

Grip diameters were taken into account in calculating the strain (ϵ), where D = grip diameter. Stress (σ) was calculated by assuming conservation of volume.

$$\varepsilon = \frac{L_i - L_s}{L_s}; \ L_s = 2D + L_0$$

$$\sigma = \frac{F}{A} \left(1 + \frac{\Delta L}{L_0} \right)$$

Ultimate tensile stress was defined as the maximum stress before failure. The Young's modulus (E) was calculated by dividing stress by strain.

Fig S1: TEBV Mechanical Testing. TEBVs were cut into rings approximately 5 mm in width (w) and mounted on modified grips (**A**). Stress and strain were calculated by taking the diameter change into account as the TEBV was pulled in tension (**B**). TEBVs stretched significantly throughout the mechanical test (**C**). Mechanical stimulation had a demonstrated impact on TEBV Young's modulus (**D**), and ultimate tensile stress (**E**). Data shown as mean \pm SEM, n = 3-7 TEBVs.

Fig. S2: Expression of α -SMA in hNDF TEBVs after 24 hours of culture.

Fig S3: Contractile protein expression of endothelialized TEBVs made with hNDFs or hMSCs matured for 5 weeks under perfusion. TEBVs made with hNDFs express α -SMA (**A**) and calponin (**B**). TEBVs made with hMSCs substantially increase production of α -SMA (**C**) and calponin (**D**) during 5 weeks of perfusion at physiological flow rates. All scale bars indicate 100 μm.

 Table S1: TEBV Collagen Fiber Density

Initial CFD (%)	Water Loss (%)	Final CFD (%)	Fold Increase in Collagen Density	
0.23 ± 0.01	96.2 ± 0.8	6.2 ± 1.2	26.1 ± 5.9	

 Table S2: Primers for RT-qPCR.

Target (Gene)	Primer Sequence
ICAM-1 (ICAM1)	Fwd: 5'-CAC CCT AGA GCC AAG GTG AC-3'
ICAM-1 (ICAM1)	Rev: 5'- GGG CCA TAC AGG ACA CGA AG-3'
α-SMA (ACTA2)	Fwd: 5'-GAC CTT TGG CTT GGC TTG TC-3'
	Rev: 5'-GTG CGG ACA GGA ATT GAA GC-3'
Colnonin1 (CNN1)	Fwd: 5'-AGG TTA AGA ACA AGC TGG CCC-3'
Calponin1 (CNN1)	Rev: 5'-ATG AAG TTG TTG CCG ATG CG-3'
B2-microglobulin (B2M)	Fwd: 5'-GGC TAT CCA GCG TAC TCC AAA G-3'
	Rev: 5'-CAA CTT CAA TGT CGG ATG GAT G-3'

 Table S3: Human Vasoactivity Responses

Drug	Target	EC ₅₀	Reference
Phenylephrine	Human saphenous vein	$10^{-5} \mathrm{M}$	(2)
Acetylcholine	Human brachial artery	$0.537 \times 10^{-6} M$	(3)
Theophylline	Human dorsal hand vein	84 µg/min	(4)
Caffeine	Human mammary artery	10 ⁻⁶ M	(5)

 Table S4: Antibodies for Flow Cytometry

Antigen	Conjugate	Source	Isotype	Vendor	Clone
CD31	FITC	Mouse	IgG1, к	BioLegend	WM59
CD144	PE	Mouse	IgG2a, к	BioLegend	BV9
CD14	FITC	Mouse	IgG1, к	BioLegend	HCD14
CD45	FITC	Mouse	IgG1, к	BioLegend	HI30
CD115	PE	Rat	IgG1, к	BioLegend	9-4D2-1E4
Mouse IgG1	FITC	Rat	IgG	BioLegend	RMG1-1

 Table S5: Antibodies for Immunofluorescence

Type	Antigen	Conjugate	Source	Clonality	Isotype	Vendor	Number
1°	vWF		Rabbit	Polyclonal	IgG	Abcam	ab6994
1°	α-SMA		Rabbit	Polyclonal	IgG	Abcam	ab5694
1°	Calponin		Rabbit	Monoclonal	IgG	Abcam	ab46794
1°	Fibronectin		Mouse	Monoclonal	IgG1	Abcam	ab26245
1°	Collagen IV		Rabbit	Polyclonal	IgG	Abcam	ab6586
1°	Laminin		Rabbit	Polyclonal	IgG	Abcam	ab91006
1°	VCAM-1		Mouse	Monoclonal	IgG1	Santa Cruz	sc-13160
1°	E-selectin		Rabbit	Polyclonal	IgG	Santa Cruz	sc-14011
1°	ICAM-1		Mouse	Monoclonal	IgG1	Santa Cruz	sc-107
1°	Rabbit IgG		Rabbit		IgG	Life Technologies	02-6102
2°	Mouse IgG	Alexa Fluor 488	Goat	Polyclonal	IgG	Life Technologies	A-11001
2°	Rabbit IgG	Alexa Fluor 594	Goat	Polyclonal	IgG	Life Technologies	A-11012

Supplementary References

- 1. E. D. Grassl, T. R. Oegema, R. T. Tranquillo, A fibrin-based arterial media equivalent. *J Biomed Mater Res A* **66**, 550-561 (2003).
- 2. C. M. Crowley, C. H. Lee, S. A. Gin, A. M. Keep, R. C. Cook, C. Van Breemen, The mechanism of excitation-contraction coupling in phenylephrine-stimulated human saphenous vein. *Am J Physiol Heart Circ Physiol* **283**, H1271-1281 (2002).
- 3. T. A. Bruning, M. G. Hendriks, P. C. Chang, E. A. Kuypers, P. A. van Zwieten, In vivo characterization of vasodilating muscarinic-receptor subtypes in humans. *Circ Res* **74**, 912-919 (1994).
- 4. M. Grossmann, J. Braune, U. Ebert, W. Kirch, Dilatory effects of phosphodiesterase inhibitors on human hand veins in vivo. *Eur J Clin Pharmacol* **54**, 35-39 (1998).
- 5. D. Echeverri, F. R. Montes, M. Cabrera, A. Galan, A. Prieto, Caffeine's vascular mechanisms of action. *Int J Vasc Med* **2010**, 834060 (2010).